
The scale, complexity, and unpredictability of

large language models (LLMs) and the

applications that make use of them can confound

even the best traditional appsec tools. While there

are measures that can and should be taken early

to build models and apps more securely, many of

the vulnerabilities on this list exist because they

take advantage of how LLMs behave by design,

meaning there's only so much that can be done

with "shift-left" solutions.

01

What it is
Prompt injection (also called "jailbreaking") is when an attacker issues clever prompts

that cause an LLM to behave against its underlying system prompts and guardrails,

possibly leading to data leaks or remote code execution.

What can be done in design

Reduce the damage a prompt injection could cause by limiting the LLMs access and

privileges to only what is necessary.

What can be done in production
To detect and prevent prompt injection vulnerabilities by monitoring and analyzing the

LLM system's behavior in runtime, identifying any suspicious or malicious prompt that

could lead to manipulations – whether those actions originate from user inputs or

anywhere else.

Prompt Injection

03

What it is
Large amounts of data are needed to train or tune LLMs, giving bad actors plenty of

opportunities to slip poisoned data somewhere into the process. An AI model trained on

poisoned data may exhibit undesirable outputs that are inaccurate, biased, or

unethical.

What can be done in design

Verify that data comes from trusted sources and be careful introducing data that can

change over time, with poisoned data introduced in place of previously good data

(such as training data produced from crawling the internet).

What can be done in production
Use tools with features like Oligo's dynamic analysis of library behavior that can detect

if an application leads to unauthorized access such as arbitrary dataset tampering in

real-time, helping to identify and mitigate the risk of data poisoning, no matter how it

originates.

Training Data Poisoning

02

What it is
The outputs of LLMs can be wildly unpredictable and may include executable code,

whether by design or because bad actors are using prompt injections. Insecure output

handling arises when those LLM outputs are piped into plugins or apps without

sufficient validation or sanitization.

What can be done in design
In your application, an LLM should be treated with the same zero-trust approach that

would be applied to any other user.

What can be done in production
Use tools (like Oligo) with runtime detection capabilities that can inspect LLM outputs

for any insecure handling that leads to code execution or access that’s out-of-scope,

and alert you when such behavior is detected.

Insecure Output Handling

04

What it is
Model denial of service happens when a bad actor crafts inputs to make the LLM

perform tasks that consume a large amount of resources, potentially bringing the LLM

down or leaving it with few resources to respond to other requests.

What can be done in design

Where possible, limit requests per user or IP, the number of actions an LLM can take to

satisfy a request, and the amount of resources that can be used per request or step.

What can be done in production
Monitoring is key. Real-time alert solutions like Oligo can detect anomalies in network

access, helping to quickly mitigate the impact of model denial of service attacks.

Model Denial of Service 05

What it is
Like any modern application ecosystem, LLMs rely on a supply chain which can

introduce risks. Vulnerabilities coming from any point in the supply chain, including

dependencies and third-party components, can lead to poor or unethical LLM

behavior, security breaches, and system failures.

What can be done in design

When building LLMs or applications making use of them, be sure to vet sources of data

and open-source dependencies and use only those that are trusted.

What can be done in production
Tools like Oligo can detect supply chain vulnerabilities, helping to mitigate issues

introduced through pre-trained models or plugin extensions.

Supply Chain Vulnerabilities

06

What it is
The unpredictability of LLM outputs can cause them to give up sensitive information

even when instructed not to. Disclosure of sensitive information through LLMs can result

in legal consequences and very unhappy customers.

What can be done in design

As with many of the top LLM vulnerabilities, input and output validation and sanitization

are mandatory. When connecting LLMs to sensitive data sources, employ the rule of

least-privilege (for example, read-only users with limited access to explicit resources)

and ensure the data used for training and fine-tuning does not include sensitive data

and Personal Identifying Information (PII).

What can be done in production
Runtime monitoring capabilities like those found with Oligo can help detect and prevent

AI agents – or bad actors abusing an LLM – from accessing databases or other sources

of sensitive information that might end up divulged to end users, reducing the risk of

legal consequences

Sensitive Information Disclosure
 07

What it is
Insecure plugins refers to those you've built to connect LLMs to external resources. If a

plugin accepts LLM output without any validation regarding its contents or size,

undesired behaviors including remote code execution are possible.

What can be done in design

Plugins should be designed to minimize the impact of receiving an insecure input, as

well as to parameterize inputs and check them for size, range, and type.

What can be done in production
Appsec tools like Oligo can analyze plugins connecting LLMs to external resources to

find vulnerabilities and prevent exploitation through malicious requests or remote code

execution.

Insecure Plugins
 08

What it is
Due to malfunctions causing unexpected or ambiguous output, an LLM with excessive

agency can cause undesired behaviors in other components it has access to.

What can be done in design

When designing systems that include LLM output, limit both permissions and

functionality of the LLM to the minimum necessary to do the job.

What can be done in production
Where possible and necessary, bring in a human to approve important actions the LLM

tries to take. When a human response isn't possible, available, or desirable, tools like

Oligo can help enforce controls on LLMs' interactions with other systems, preventing

excessive agency and reducing the risk of undesirable operations or actions.

Excessive Agency

09

What it is
Don't believe everything you read on the internet, even (or maybe especially) when it

comes from an LLM. Overreliance on LLM outputs for decision-making without

checking for accuracy can result in making poor decisions that may lead to legal issues

and reputational damage.

What can be done in design

Keep in mind that LLMs hallucinate from time to time, and don’t use LLMs outputs for

application decision-making if they are connected to sensitive data sources. If your AI

application is user-facing, remind your users to take LLM outputs with a grain of salt.

What can be done in production
Make sure that the LLMs used in your production applications cannot lead to

unintended behavior, by design. Minimize the reliance on LLM outputs for controlling

the flow and logic of your applications, and always sanitize the LLM prompts and

responses, with explicit security guardrails.

Overreliance 10

What it is
LLMs and data crucial to their operation can be exfiltrated, in whole or in part, after

access is gained through exploiting other infrastructure vulnerabilities or through

prompt injection. LLM theft can result in exposure of sensitive data and the loss of

reputation and competitive advantage.

What can be done in design

Regular security best practices like encryption of sensitive data, the principle of least-

privilege, and strong authentication all apply here.

What can be done in production
Monitoring is vital. Runtime detection solutions like Oligo can help detect and prevent

unauthorized access to proprietary LLMs, reducing the risk of theft, competitive

advantage loss, and sensitive information dissemination.

Model Theft

Zero in on what's exploitable
Oligo helps organizations focus on true exploitability, streamlining

security processes without hindering developer productivity.

Learn more

Conclusion

Notice any patterns? LLMs often produce

surprising (sometimes "haha" surprising,

sometimes "oh no" surprising) results, and their size

and capabilities naturally increase the attack

surface. Luckily, the behavior of the libraries and

systems composing and interacting with LLMs are

very predictable, making it possible to stop threat

actors from exploiting LLM vulnerabilities. Runtime

observability, detection, and mitigation are crucial

in securing LLM applications and the important

assets they interact with.

Read the full report:

OWASP Top 10 for LLM

https://www.oligo.security/
https://owasp.org/www-project-top-10-for-large-language-model-applications/assets/PDF/OWASP-Top-10-for-LLMs-2023-v05.pdf

	OWASP LLM Cheatsheet PDF 01
	OWASP LLM Cheatsheet PDF 02

