
2025 Ebook

Introduction

Prioritizing and mitigating software vulnerabilities is a formidable challenge for most

organizations. Tens of thousands of new CVEs are discovered every year. But most

organizations lack a clear understanding of which vulnerabilities are genuinely exploitable

within their applications and runtime environments.

Developers waste time and effort addressing CVEs that don’t pose a legitimate threat to

their applications - and their business at large. IT organizations waste time and effort

patching vulnerabilities that pose no real-world risk.

Application security solutions can help organizations avoid wasted time and effort and

reduce exposure by focusing on the CVEs that matter most. But not all application security

solutions take the same approach to assessing risk and prioritizing CVEs.

This eBook explains the differences between traditional shift-left AppSec solutions that

assess reachability and newer runtime AppSec solutions that assess exploitability.

You will learn:

1 The key differences between reachability analysis and exploitability analysis

2 The pros and cons of each approach

3 Best practices for strengthening your application security posture and eliminating CVE sprawl and fatigue

From Reachability to Exploitability

oligo.security 02 / 11

https://www.oligo.security/

oligo.security 03 / 11

What is Reachability Analysis?

From Reachability to Exploitability

Many “shift-left” application security solutions use reachability analysis to help security

analysts and developers prioritize CVEs, improve productivity, and reduce exposure. This

approach examines an application’s codebase, tracing function calls and dependencies to

determine if vulnerable code is theoretically reachable (i.e., potentially called by the

application.)

Reachability rules out many, but

not all CVEs

R E A C H A B L E 
C V e S

t o t a l c v e s

Reachability analysis helps developers save

time and effort by deprioritizing CVEs

associated with uncalled code or functions,

but it is far from a perfect solution.

Reachability analysis cannot conclusively

determine if vulnerable code is ever called

in a running application.

Developers are still overwhelmed by false

positives. They still squander time and

energy addressing CVEs that don’t present

an actual risk to the business.

Even worse, the assessment is performed  

at a single point in time during development.

A lot can change after that assessment is

performed. Vulnerable code can be added

during the build phase or even dynamically

loaded during runtime, leaving applications

exposed to exploitation.

https://www.oligo.security/

Reachability Analysis Tradeoffs

p r o s

Straightforward operation: easily integrated early in the development lifecycle

Improved visibility: provides useful insights during code reviews or CI/CD pipeline checks

Increased productivity: allows developers to rule out many, but not all inapplicable CVEs

c o n s

No runtime visibility: reachability identifies potential exposure but can’t deterministically

confirm if the vulnerable code is executed in the running application and if the CVE  

is truly relevant

High false positives: developers are still flooded with alerts for theoretical vulnerabilities that

don’t pose a legitimate threat to production systems

Single point in time assessment: reachability is evaluated at a single point in time during

development; CVEs discovered or published any time after the initial reachability assessment

go undetected in production

Inefficient: the approach consumes significant time and CPU resources during the CI/CD

process

Limited scope: reachability analysis often only considers the code present in the repository; it

can yield inaccurate results if the assessed code does not match the final production state

From Reachability to Exploitability

oligo.security 04 / 11

https://www.oligo.security/

t o t a l c v e s

oligo.security 05 / 11

What is Exploitability Analysis?

From Reachability to Exploitability

Exploitability analysis is the logical evolution of reachability analysis. Unlike reachability

analysis, which is performed at a single point in time during development, exploitability

analysis is performed continuously on running code during execution, typically during staging

or in production. Exploitability analysis overcomes the inherent inefficiencies and constraints

of reachability analysis by definitively determining whether specific functions within a

library or codebase are actively invoked by an application.Reachability analysis is performed

on code repositories or within the CI/CD pipeline, but it often misses dynamically loaded

code or changes during build and deployment. In contrast, exploitability analysis is

performed at runtime, examining the actual running code, ensuring evidence is derived  

with certainty.

Modern runtime AppSec solutions leverage native kernel-level monitoring capabilities  

to assess exploitability, providing granular, real-time insights into application behavior

without impairing application performance or operation.

Exploitability definitively rules out most CVEs

R E A C H A B L E 
C V e S

e x p l o i t a b l e  
C V e S

https://www.oligo.security/

p r o s

Full runtime visibility: provides deep, live observability into first-party, third-party, and open-

source code

Definitive insights: deterministically ascertains if vulnerable code is truly exploitable

Extreme precision: eliminates false positives, CVE fatigue, and guesswork

Ultimate productivity: removes developers from the vulnerability assessment process

Maximum risk mitigation: reduces attack surface and strengthens security posture

Pre-production: can be run within the CI/CD process whenever a fully running application is

present

c o n s

Special-purpose instrumentation: requires a software-based sensor

Runtime-only insights: does not scan code in an IDE or repository

Exploitability Analysis Tradeoffs

From Reachability to Exploitability

oligo.security 06 / 11

https://www.oligo.security/

Reachability vs Exploitability
Comparison

From Reachability to Exploitability

R e a c h a b i l i t y E x p l o i t a b i l i t y

SLDC Stage Development Runtime (typically during
staging and/or in
production)

Scope Open source in first party
applications with source
code access

Open source in first and
third party applications
without source code
access

Precision Low - theoretical High - deterministic

Real-time visibility into
app behavior

Low - theoretical High - deterministic

Eliminates a large
percentage of false
positives

No Yes

Avoids access to source
code

No Yes

Best Practices for
Strengthening Your
Application Security Posture

Software vulnerabilities can overwhelm development, security, and IT organizations and

expose business-critical systems to attack.

Follow these best practices to strengthen application security, reduce CVE sprawl, and

mitigate risk:

1 Foster a security-first culture; promote collaboration and knowledge-sharing across development, AppSec,

and IT teams

2 Augment existing shift-left tools and practices with a runtime AppSec solution that assesses exploitability

3 Look for a runtime AppSec solution that supports automated remediations to intelligently detect and block

active exploits

4 Choose a solution with an extensive vulnerability knowledge base that includes vulnerable functions

associated with CVEs

From Reachability to Exploitability

oligo.security 08 / 11

https://www.oligo.security/

Take Reachability to the Next
Level with Oligo Exploitability
Analysis

Oligo goes beyond reachability, using exploitability analysis to definitively determine if a CVE

presents an imminent threat to your running environment. Our innovative deep application

inspection technology lets you observe the runtime behavior of every dependency in every

application and system component you build, buy, or use.

With Oligo you can:

From Reachability to Exploitability

oligo.security 09 / 11

Discover genuine exposure: conclusively determine if vulnerable code or functions are loaded and executed
by your application at runtime

Detect active exploit attempts: intelligently identify unusual activity symptomatic of an in-progress attack

Preemptively stop attacks: automatically block suspicious actions at the function level, without compromising
the rest of the code base and application

Discover genuine exposure with Oligo

2334 1640 395 10

Not in use Loaded Executed
Vulnerable

function
executed

https://www.oligo.security/

Ebook oligo.security

To learn how Oligo exploitability analysis can help your organization improve
observability and mitigate risk

See Oligo in Action

Next Steps

https://www.oligo.security/
https://www.oligo.security/demo

