
Ebook

Navigating Open
Source Vulnerabilities
A Guide to Risk Prioritization

Navigating Open Source
Vulnerabilities

Navigating Open Source Vulnerabilities

oligo.security 02

Introduction

Why open source has become your biggest source of risk

Common challenges to vulnerability risk management

Growing number of vulnerabilities

Increasingly complex environments

Resistance within the organization

Unique open-source challenges

Your guide to risk prioritization best practices

Assessing the vulnerability

Prioritizing and acting on the vulnerability

Scorä

å Common Vulnerability Scoring System (CVSS)é

å Exploit Prediction Scoring System (EPSS)é

å Common Weakness Scoring System (CWSS)é

å Microsoft Exploitability Indexé

å Stakeholder-Specific Vulnerability Categorization (SSVCÆ

å OWASP Risk Rating Methodology (ORRM)

Exposure

Permissions

Status

4

5

6

7

8

9

9

10

10

10

10

11

11

11

11

11

12

12

13

14

15

20

Application security solutions that don’t cover you 100%

The necessity of contextual runtime insights

15Static application security testing (SAST)

16Dynamic application security testing (DAST)

17Software composition analysis (SCA)	

18

19

Penetration testing

Runtime application self-protection (RASP)

https://www.oligo.security/

Navigating Open Source Vulnerabilities

oligo.security 03

Enriching runtime insights with context

Cloud application context

Business context

Points to consider when choosing an SCA tool

The advantages of a modern vulnerability prioritization and management solution

How does eBPF work?

How Oligo is different

21

21

21

22

23

24

25

https://www.oligo.security/

Introduction

If you’re like most companies today, you’re building with open-source software, a tremendous asset

that lets you build apps more quickly and efficiently, building on others’ great code. But did you know

that open source is also the greatest threat to your business’s security, introducing new types of

vulnerabilities that your current tools can’t easily combat?

Keeping up with vulnerability management has become much harder over the last few years.

There are so many new vulnerabilities being discovered every year, along with new sources of

vulnerabilities that never existed before—leaving your organization exposed to significant threats.

Like most businesses today, your engineering teams are doing the best they can with the resources they

have. However, they simply don’t have the infinite time or personnel it would take to chase down every

single vulnerability.

Nor should they have to. In fact, many of the vulnerabilities found in the open-source code they use

would not actually be exploitable in their environment.

In these cases, resolving the vulnerabilities would be a waste of your team’s limited time and energy.

To establish and maintain a healthy security posture with limited resources, you need to work efficiently,

which means directing your resources to where they’ll do the most good. And the simplest way to do

that is to prioritize vulnerabilities so your teams can address the most relevant, critical threats before

they are exploited.

Let’s explore some of the challenges and misconceptions when it comes to defending today’s software

—and open-source software in particular—along with some guidelines for choosing an effective tool to

help prioritize your most critical vulnerabilities.

Navigating Open Source Vulnerabilities

oligo.security 04

https://www.oligo.security/

Why open source has become
your biggest source of risk

All of the challenges previously discussed are now being compounded by an emerging source of risk:

open-source software.

The way we develop software today has changed: We are no longer coding applications from scratch;

we are assembling them from components that are increasingly coming from popular open-source

repositories like GitHub, GitLab, SourceForge, PyPI, and many more.

More and more developers rely on open source to build critical applications such as web applications,

databases, and operating systems.

Navigating Open Source Vulnerabilities

Developers love open source because it makes their lives easier; they no longer have to reinvent the

wheel and recreate code that someone else has already created. Open-source repositories are also

buoyed by the spirit of community. But lurking beneath that runs a problematic undercurrent, as some

malicious actors attempt to exploit the spirit of open source for harmful purposes.

And the truth is that a single vulnerability in an open-source component could potentially have a major

impact not just on your own operations, but on your customers’.

This was brought to the world’s attention through the

, but incidents involving open-source vulnerabilities continue to make headlines. For

example, a leveraged a previously unknown vulnerability in the

highly popular MOVEit document-transfer app.  

A single attack compromised numerous high-profile customers of U.K.-based SaaS payroll services 

provider Zellis.

Attackers know it’s incredibly easy to exploit one vulnerability in open-source code and through it,

access many targets around the world, as opposed to finding vulnerabilities in proprietary code, which is

much more difficult. That’s why organizations must be vigilant to ensure that they are aware of the latest

vulnerabilities and take steps to mitigate the risks.

But as we’ll see in the next section, that’s not always as simple as it sounds.

 shocking repercussions of the Log4j vulnerability in

2021 and 2022

 series of zero-day attacks in May 2023

In fact, experts estimate that

of the apps we use today now include

at least some open-source components.

70%-90% 

oligo.security 05

https://www.axios.com/2022/12/09/log4j-year-anniversary-cybersecurity
https://www.axios.com/2022/12/09/log4j-year-anniversary-cybersecurity
https://www.computerweekly.com/news/366539413/Victims-of-MOVEit-SQL-injection-zero-day-mount-up
https://www.infosecurity-magazine.com/opinions/open-source-software-pockets-help/
https://www.infosecurity-magazine.com/opinions/open-source-software-pockets-help/
https://www.infosecurity-magazine.com/opinions/open-source-software-pockets-help/
https://www.oligo.security/

Common challenges to
vulnerability risk management

Combating vulnerabilities is already extremely difficult without the complexity added by open-source

software. Why?

For one thing, more vulnerabilities are being discovered every single day, on top of the fact that

today’s apps and environments are becoming more complex and difficult to protect.

Navigating Open Source Vulnerabilities

So it’s no surprise that found that vulnerabilities in third-

party software now comprise the third costliest attack vector—with an average cost of $4.45M for

a vulnerability-based data breach.

They also discovered that data breaches caused by third-party vulnerabilities took an average

of 207 days to identify and 70 days—over two months—to successfully contain.

 research from Ponemon Institute and IBM

Data breaches caused by third-party vulnerabilitiesVulnerability-based data breach

207 70
days to identify days to successfully contain

$4.45M
Average cost

3rd costliest
attack vector

Vulnerabilities in third-party

software are the

Clearly, current remediation efforts are not effective; they allow too many vulnerabilities to remain

unchecked within the environment.

In addition, many security and engineering teams feel that they are not adequately supported

and prioritized within their organization as they struggle with a range of challenges, some of which

we discuss below.

oligo.security 06

https://www.ibm.com/reports/data-breach
https://www.oligo.security/

Growing number of vulnerabilities

Navigating Open Source Vulnerabilities

It’s not just the number of vulnerabilities that is growing, but their complexity as well.  

The nonprofit MITRE Corporation and the U.S. Cybersecurity and Infrastructure Security Agency

(CISA) track all reported common vulnerabilities and exposures (CVEs) worldwide.

Meanwhile, the CVEs reported are increasingly diverse, with more than 130 unique software flaws

reported in any given month.

The percentage of these CVEs that are being actively exploited in the wild is also rising, meaning they

represent a clear and present danger to all organizations using open-source code.

Given the statistics above on the length of time it takes most organizations to identify and remediate

vulnerabilities, it’s easy to see why it’s simply not feasible to fix all of these vulnerabilities. Instead, you

need to know which are most relevant to your organization and most likely to pose an actual threat—

then go after these highly relevant vulnerabilities first.

Experts predict that by 2025,

they’ll be tracking

every single week.

500 new CVEs
2025

oligo.security 07

https://www.oligo.security/

Increasingly complex environments

Navigating Open Source Vulnerabilities

Today’s environments and apps are more complex in a few key ways.

First, more and more apps are being developed around microservices and container architectures,

making them more complicated, with more moving parts to manage.

In addition, today’s cloud-native apps are more efficient and scalable, but they also add complexity.

Given the dynamic nature of cloud, these environments are continuously changing, making it

difficult to keep apps secure.

Finally, a growing reliance on third-party code and libraries means there are more dependencies

to manage and secure.

All of this leads to a number of problems:

Too many

vulnerabilities to track

There are continuously

more and more known

vulnerabilities, making it

difficult to prioritize which

ones to address first.

Multiple

development teams

Security teams that are

already spread thin may have

a hard time communicating

with development teams that

are often using different tools

and procedures.

Developer

buy-in

Security issues are not always

developers’ top priority.

Lack of visibility into

assets

Organizations often have a

poor understanding of their IT

assets, which makes it difficult

to prioritize vulnerabilities.

Complex

prioritization

There are numerous criteria

to consider when prioritizing

vulnerabilities, including

severity, impact, exploitability,

and threat intelligence.

oligo.security 08

https://www.oligo.security/

Resistance within the organization

Navigating Open Source Vulnerabilities

“It’s an IT/security issue.”

And yet, vulnerabilities can have a significant impact on a company, including financial

loss, reputational damage, and compliance violations.

“It’s a one-time project.”

In fact, it’s an ongoing challenge that demands continuous monitoring and remediation

—along with up-to-date, automated tools.

“It’s less important for smaller businesses.”

All businesses, regardless of size, are vulnerable to attack, and smaller businesses may

be at greater risk since they invest less in vulnerability management. Plus, smaller

businesses might not have the resilience and resources to recover from a major incident.

At the same time, security teams face misconceptions when it comes to handling vulnerabilities:

Unique open-source challenges

In addition to the challenges above, which are true for managing vulnerabilities across all software,

there are unique challenges when it comes to staying up-to-date with open-source software. 

On top of this, tracking your use of open-source components is difficult; they’re often embedded in

other software, both your own and that of third parties, making them difficult to identify and monitor.

While open source introduces many risks, traditional security tools use methods that aren’t well suited to

today’s software models.

This makes risk prioritization even more urgent than ever.

This makes risk prioritization even more urgent than ever.

15% 85%
Only a small percentage of

vulnerabilities—perhaps 15%—

detected by traditional solutions

actually pose a risk to the business.

The other 85% are irrelevant,

leading to a deluge of false

positive alerts, noise, and

alert fatigue.

oligo.security 09

https://www.oligo.security/

Your guide to risk prioritization
best practices

Navigating Open Source Vulnerabilities

As we’ve seen above, without strong risk prioritization best practices, your teams can’t work efficiently to

address the vulnerabilities that are most likely to impact your business. You can’t afford to treat every

vulnerability equally, and standard ranking doesn’t always help with prioritization.

Determining which vulnerabilities pose the most relevant risks for your organization involves a large

number of variables. Here are a few of the criteria that you should keep in mind to begin prioritizing

vulnerabilities once they are identified.

The first step is to identify the vulnerability and understand its severity, along with the potential impact

should it be exploited. Below, we cover some of the most common criteria used by security tools to

determine how much of a threat a given vulnerability might be.

Assessing the vulnerability

There are several standards used to determine the severity score of a particular vulnerability.

Score

This free and open industry standard is the most commonly used metric.  

The Forum of Incident Response and Security Teams (FIRST), a global alliance of security

professionals, assigns a score to each newly reported vulnerability based on impact and

exploitability. The CVSS is a numerical score from 0.0 to 10.0.

Most vulnerability identification and prioritization tools use CVSS for at least part of their

risk calculations.

Common Vulnerability Scoring System (CVSS)

oligo.security 10

https://www.oligo.security/

Navigating Open Source Vulnerabilities

Also developed and promoted by FIRST, the EPSS score provides a probability score (from 0%

to 100%) that a particular vulnerability will be exploited in a given organization, considering

specific deployment factors to adjust standardized vulnerability scores such as CVSS.

Exploit Prediction Scoring System (EPSS)

Developed by the MITRE corporation, the CWSS attempts to help developers prioritize code-

level fixes for software weaknesses. Unlike CVSS, it allows for custom prioritization based on

environmental and business factors. The maximum value for CWSS is 100.

Common Weakness Scoring System (CWSS)

This scoring system created by Microsoft assesses the chance that a vulnerability will be

exploited in the wild. Scores range from 0 (Exploitation Detected) to 3 (Exploitation Unlikely).

This rating may change from time to time based on Microsoft threat intelligence.

Microsoft Exploitability Index

Developed in collaboration with CISA, the Stakeholder-Specific Vulnerability Categorization

(SSVC) offers a nuanced vulnerability analysis method. It considers exploitation status, safety

impacts, and affected product prevalence. Tailored for the U.S. government and critical entities,

SSVC enhances vulnerability response, emphasizing truly critical threats.

Stakeholder-Specific Vulnerability Categorization (SSVC)

OWASP's methodology for assessing web application risks considers a range of factors like

impact, likelihood, and remediation difficulty and generates a score from 0 through 9. Scores

below 3 (non-inclusive) are given a LOW impact level, scores from 3 to 6 (non-inclusive) have a

MEDIUM impact level, and scores from 6 to 9 are considered to have a HIGH impact level.

Regardless of which metrics are used, a vulnerability score is only the beginning when it comes

to evaluating the severity of a particular vulnerability within your particular organization.

OWASP Risk Rating Methodology (ORRM)

oligo.security 11

https://www.oligo.security/

Navigating Open Source Vulnerabilities

Exposure means determining the likelihood that an attacker will be able to find and exploit the

vulnerability, based on a few factors:

Exposure

Ease of access

Commonly attacked targets include critical

systems, widely used software, or sensitive

data repositories because this is where

attackers know they are  

most likely to find the sensitive data they seek.

Exact location

Is the vulnerability located in an image that

is accessible to the internet? Or is it only

used in an internal environment and will

therefore present less of a risk (and be

assigned a lower priority)?

Value

Does the vulnerable process have access to

sensitive data, such as personally

identifiable information (PII), intellectual

property (IP), or sensitive customer data?

This type of information is generally more

appealing to attackers.

Exploitability

More easily exploitable vulnerabilities are

obviously the ones that will give attackers

the greatest odds of a payoff with the least

complexity and effort.

The permission level assigned to a given process is part of how you should prioritize the

vulnerability once identified.

Processes with high privilege levels (admin or root) give attackers fast and simple access to, and

control over, the system. Processes with lower privilege levels can still be exploited, however, and

these are often used as a stepping stone to privilege escalation, with devastating impact.

Permissions

oligo.security 12

https://www.oligo.security/

Navigating Open Source Vulnerabilities

Status
With false positives being such a problem in vulnerability identification, it’s important to

understand not only whether a vulnerability exists, but the current status at runtime of the

vulnerable library or process.

For instance, you’ll need to find out if the vulnerable library is in use at all. Is it running in any

app? If not, rather than time-intensive remediation efforts, you might be able to simply delete

the library containing the vulnerability. If it is in use, do you know where it is being used and the

frequency of its usage?

Evaluating all of these criteria will give you a better sense of your actual likelihood of an attack

based on any given vulnerability. For example, many security tools prioritize vulnerabilities based

on CVSS alone, which doesn’t give you a full picture of the actual likelihood of attack. (A critical

vulnerability that is not exposed to the open internet is actually a pretty low risk.)

oligo.security 13

https://www.oligo.security/

Prioritizing and acting on the vulnerability

Navigating Open Source Vulnerabilities

The next stage involves managing the most high-severity vulnerabilities with the highest likelihood of

being exploited based on the vulnerability itself along with its potential impact on your business.

By combining all of these factors, you will have a true picture of the severity of a particular vulnerability,

including its potential impact on your operations and your business.

Obviously, it’s impossible to perform all of these steps manually for every single one of the thousands of

CVEs that are now coming in monthly. That’s why tools that simplify vulnerability prioritization have

become popular over the last few years. These tools can generate ROI in several ways.

Besides minimizing the risk of a successful attack, vulnerability prioritization can also aid in compliance

and help businesses utilize constrained resources more efficiently.

Yet, to ensure ROI and, more importantly, guarantee that your vulnerability management solution works

effectively, you need to choose a modern application security solution designed for the way today’s

software is built. And as we’ll see in the following section, not all tools can achieve that effectively.

Regulation

Does it violate compliance regulations such as PCI?

This knowledge is essential to prioritization since failure to comply with regulations could

have severe business consequences.

Ownership

Is it in third-party code or code belonging to someone else in your organization? If so,

determine whether the vendor or owner has released a patch. Remediation and

mitigation steps will be either simpler or more complex depending on whether a patch

is available.

Complexity

How complicated is the fix? For example, it’s possible that a single fix could address

numerous CVEs—for example, remediating 20 vulnerabilities at once if they’re all part

of the same library. 

On the other hand, one seemingly simple fix could have unintended repercussions

throughout your organization and bring down mission-critical production resources,

with disastrous results.

oligo.security 14

https://www.oligo.security/

Application security solutions that
don’t cover you 100%

Navigating Open Source Vulnerabilities

Many existing application security tools provide a partial solution, failing to meet 100% of your needs

when it comes to detecting the most relevant, urgent vulnerabilities for your organization. Most

application security tools today fall into one of three categories: static application security testing

(SAST), dynamic application security testing (DAST), and software composition analysis (SCA). Each of

these offers specific pros and cons.

SAST tools discover security vulnerabilities by examining application source code. Because it has access

to this code, it’s considered a “white box” testing methodology. These tools integrate easily into the

development cycle, letting developers identify code-based problems early.

SAST tools encourage safe coding practices among developers. They can also catch some of the most

common sources of vulnerability like hard-coded secrets or unsanitized user input, which can lead to

injection attacks, very early on in the development process.

Static application security testing (SAST)

Problem

SAST tools don’t offer any way to discover runtime-specific vulnerabilities—such as

race conditions or null pointer references—and other suspicious behavior that emerges

only when the code is executed.

oligo.security 15

https://www.oligo.security/

Navigating Open Source Vulnerabilities

DAST tools work by simulating attack scenarios, sending simulated input to an application to

uncover vulnerabilities at risk of being a security threat. Since there is no access to the source code,

this is considered a “black box” testing methodology. This gives developers a good idea of how well

an external-facing application will stand up to real-world attack scenarios; it can also uncover

vulnerabilities that might not be obvious from code analysis alone.

DAST can be an effective part of the development and testing cycle, helping to identify common

vulnerability types such as cross-site scripting, injection attacks, and insecure session management.

However, DAST tools typically provide very little insight into remediating issues they may identify.

Dynamic application security testing (DAST)

Problem

DAST testing takes more time and resources than SAST. More importantly,

DAST tools only cover aspects of an application that are exposed to real-world traffic.

Components that require specific inputs or actions that the tool doesn’t test may

conceal vulnerabilities, leading to incomplete vulnerability identification—a very

dangerous situation where negative test results can produce a false sense of security.

oligo.security 16

https://www.oligo.security/

Navigating Open Source Vulnerabilities

SCA tools offer a powerful way to identify vulnerabilities in open-source components, track the

license compliance of these components, and manage their risk. While these tools are typically easy

to use and integrate within the development lifecycle, it’s important to note that they can only

detect known vulnerabilities that have been listed properly.

In addition, with the massive rise in vulnerabilities, SCA tool overload has become a major problem

in many organizations. That’s because a large number of vulnerabilities—in some cases, over 80%--

generated by SCA tools are not relevant and can't actually be exploited. For example, they may be

part of a library that is not running in the application.

Software composition analysis (SCA)

Problem

Many SCA tools issue too many irrelevant alerts, plus they don't cover vulnerabilities

in third-party software in the environment. Because of this, SCA tools can actually

inhibit innovation, creating so much noise that developers wind up wasting time

patching vulnerabilities instead of focusing on actual development work.

More importantly, however, SCA tools don’t work at runtime, meaning they lack

critical insights into the security posture revealed by the app’s behavior, including

cloud context, architecture, and specific usage patterns.

oligo.security 17

https://www.oligo.security/

Navigating Open Source Vulnerabilities

Penetration testing, or “pen testing” is a manual process in which qualified security professionals

(these are sometimes known as ethical hackers) use a variety of automated and manual techniques

to exploit known and unknown vulnerabilities. Pen testing can reveal vulnerabilities through

techniques such as social engineering, phishing, and SQL injection.

While this type of testing is more expensive than DAST since it relies on human testers, it also

provides better coverage, assessing code at runtime, which is essential for a more comprehensive

approach. It can also offer a broader scope of coverage than DAST, including network-,

application-, and infrastructure-related vulnerabilities. Pen testing usually serves as a complement

to other security tools.

Penetration testing

Problem

The greatest barrier with pen testing is its cost, as it requires one or more dedicated

security professionals. Pen testing is also based on known vulnerabilities and

exploits, rather than malicious behavior, so it is not very effective against zero-day

(previously unknown) vulnerabilities.

It can also have problems identifying issues within the code such as business logic

flaws, configuration issues, and problems with third-party components.

oligo.security 18

https://www.oligo.security/

RASP solutions attempt to go beyond perimeter-based protections such as firewalls that use

network information to detect and block attacks, but they lack contextual awareness. They rely on

instrumentation within the code itself to extract data during software execution, using this data to

identify and thwart attacks and protect the runtime environment from unwanted changes and

tampering.

While RASP is a step in the right direction, it requires the application code to be instrumented, which

can be complex and time-consuming; it can also have a significant performance overhead. Plus,

most RASP solutions treat the entire application as a black box, performing their analysis without

regard to any individual libraries, meaning there’s no app-level runtime protection.

Runtime application self-protection (RASP)

Navigating Open Source Vulnerabilities

Problem

RASP yields too many unexplainable false positives based on heuristics while

missing real exploits and leaving applications defenseless.

oligo.security 19

https://www.oligo.security/

The necessity of contextual
runtime insights

Navigating Open Source Vulnerabilities

The truth is that in light of the danger posed by open source, many previous tools are no longer able

to keep up. Today’s application security is noisy and ineffective, sending security teams running off in

a hundred different directions—many of which will not yield any benefit from an actual security

perspective.

At the same time, many attacks happen after an application is deployed and running in production,

when traditional application security tools that rely on static analysis and unit testing can’t do

anything to protect you.

In addition, many open-source components are not well maintained. Without reliable updates, you

can’t remediate vulnerabilities as quickly as you need to, which increases your risk.

And when patches simply aren’t available, prioritization isn’t enough. This underscores the need for a

security solution that enables detection and prevention when you need it most—during runtime.

Runtime detection is an essential component when it comes to prioritizing and managing

vulnerabilities. With runtime insights, you gain a fuller picture of the risk any given vulnerability poses

specifically to your environment.

Runtime observability ensures that you can:

Understand the impact of each vulnerability

in your production environment

Prioritize vulnerabilities based on actual usage

Understand your environment's risks

Manage efforts and resources

effectively

Respond to incidents more quickly

and effectively

Simply detecting vulnerabilities is not enough.  

To achieve proper runtime observability, you need to embrace tooling that helps you collect data

about your open-source components, analyze that data, and create genuine prioritization based on

actual risk so that your team knows exactly what to address first.

Probably the most essential step to analyzing and prioritizing vulnerabilities while avoiding alert fatigue

is to enrich the insights you’re able to gather with context, as we’ll see in the next section.

Most traditional security tools take a static approach, looking at the code or the build and offering

security guidance that is static in nature. Runtime insights, on the other hand, help you take vulnerability

detection to the next level, cutting through the noise and getting to the data you truly need.

oligo.security 20

https://www.oligo.security/

Enriching runtime insights
with context

Navigating Open Source Vulnerabilities

Consider the asset's internet

accessibility, data access,

capabilities, privileges, and level of

access.

Understand the environment's

posture in which the application is

deployed and its connections to

other assets and resources.

Using the above two factors,

identify assets that require urgent

remediation and filter out

vulnerabilities that are not

reachable.

Despite the advantages of gathering runtime data, simply gaining insights isn’t enough. When you have

too much vulnerability data, it’s impossible to know where to begin remediating.

To address this, engineering teams need two types of context.

Cloud application context

Consider the asset's exposure,

business criticality, and potential

impact.

Prioritize assets with higher exposure,

criticality, or potential impact.

Evaluate asset context to achieve

a comprehensive risk assessment.

Many current security tools fall short in one or both of these areas, especially when it comes to cloud-

native app development. That’s why it pays to be careful when you’re investing in a security tool.

In the next section, we’ll look at some questions you need to ask vendors when you’re considering

adopting an SCA or any other application security tool.

Business context

oligo.security 21

https://www.oligo.security/

Points to consider when
choosing an AppSec tool

Navigating Open Source Vulnerabilities

When looking for an application security tool that provides real-time insights into environment

vulnerabilities, here are a few questions to ask a vendor:

Clearly, there are many factors to consider when it comes to choosing a tool to help you deal with

open-source vulnerabilities and risk prioritization.

While it can be difficult to tell the many offerings apart, ultimately you need a tool that will help your

engineering team get their work done more efficiently and effectively in order to identify and resolve

vulnerabilities before they become a bigger problem.

Does the tool provide real-time visibility during runtime?

This lets you identify and remediate vulnerabilities as soon as they are identified.

Does the tool help automate visibility into vulnerabilities and remediation?

This will save time and resources, and help ensure that vulnerabilities are patched

or removed in a timely manner.

Does the tool integrate with existing security tools?

Chances are, your engineering team is working in a very complex environment.

The better a solution integrates with your existing workflows, the more useful it will be.

Does the tool consider context along with identifying and

remediating vulnerabilities?

Evaluating the asset's exposure, business criticality, and potential impact will help

ensure that you fight the most urgent vulnerabilities first.

Does the tool allow customization of vulnerability prioritization?

What’s most urgent for one organization may not be the same for yours, so establishing

your own priorities will help save work while defending your crown-jewel assets.

oligo.security 22

https://www.oligo.security/

The advantages of a modern

AppSec solution

Navigating Open Source Vulnerabilities

As we’ve seen, vulnerability prioritization isn’t quite enough. To get the most possible benefit from a

vulnerability detection and remediation solution in modern applications, you need runtime visibility.

That’s because, with a stronger sense of the runtime environment (cloud context, library execution

state at runtime, runtime behavior, etc.), you can more easily assess and address the actual risk.

Oligo is a cutting-edge vulnerability visibility and prioritization solution that offers context-aware

runtime protection, examining cloud and application execution in real time. It accomplishes this

through the use of eBPF, a powerful framework that makes runtime measurement feasible directly

within the Linux kernel, covering the entire system by design.

Oligo uses eBPF to provide comprehensive attack coverage and high detection accuracy without the

need for manual maintenance.

Here are some of the major differences between Oligo’s eBPF-based solution versus existing

application security solutions:

Feature

Instrumentation

Performance
overhead

Attack coverage

Maintenance

Detection accuracy High

Oligo (eBPF)

eBPF can instrument the
kernel without altering code

Minimal

Entire host, including the
application, third-party
libraries, and the kernel

No need for manual
maintenance or custom
configuration

RASP

Requires instrumentation of
application code (complex and
time-consuming)

May be significant

Only the application

High maintenance from developers,
with specific deployments and
customization for each application;
manual maintenance to keep up with
new vulnerabilities

Can be inaccurate, as it relies
on known threats

SCA

No instrumentation
required

Zero performance
impact

Only the application

None beyond routine
vulnerability, scanner,
and policy updates

Potentially accurate,
if maintained and
updated

Granularity Very granular Less granular Very granular

Type of coverage Dynamic Dynamic Usually static

oligo.security 23

https://www.oligo.security/

How does eBPF work?

Navigating Open Source Vulnerabilities

eBPF drives Oligo’s runtime detection and prioritization by loading programs at runtime that

can be attached to various kernel events. Oligo uses eBPF to inspect or modify data passing

through the kernel in real time without the need to recompile the kernel or load kernel

modules. This makes it ideal for monitoring the behavior of all host system components,

including the application, third-party libraries, and the kernel itself.

This means Oligo can give you a more comprehensive and accurate runtime security solution than

older RASP-based solutions.

And because Oligo's flexible, efficient eBPF sensor drills down to the library level of code, analyzing all

function calls, Oligo can see precisely what is running and loaded, and whether vulnerable functions

are exposed, providing comprehensive attack coverage and high detection accuracy without the

need for manual maintenance.

Oligo Sensor

Linux Kernel

Apps Apps

Smart Collector

Rule Engine

Real-Time Security Enforcer

System Calls

VFS

TCP/IP

Namespaces

Storage

Network

oligo.security 24

https://www.oligo.security/

Navigating Open Source Vulnerabilities

Crystal-clear visibility. You’ll get an in-depth understanding of all open-source libraries

within your apps at runtime, as well as the runtime state of these libraries.  

This helps you prioritize vulnerabilities and identify malicious activity.

Pinpoint prioritization. Oligo prioritizes vulnerabilities based on actual runtime

context like network exposure, data accessibility, container privileges, and more,

letting you focus on the most critical vulnerabilities.

Zero-trust approach. An analysis of the application's behavior at the library level

allows you to uncover malicious behavior that wouldn’t be detectable otherwise.

Proactive detection. Oligo creates a unique profile for each open-source library

so it can detect malicious activity, such as code execution or data exfiltration.

Real-time insights. Oligo identifies and helps remediate vulnerabilities before

they are exploited by revealing execution behavior in real time.

Library-level least privilege: Oligo prevents malicious activity from accessing

resources it should not have access to.

Baseline behavior monitoring: Profiles baseline behavior for each OSS library in the app

so it can identify unexpected behavior and alert when malicious activity is detected.

Zero-trust approach. An analysis of the application's behavior at the library level

allows you to uncover malicious behavior that wouldn’t be detectable otherwise.

Deeper detection: Uncovers malicious activity at a deeper level and with higher

resolution, detecting activity that other solutions may miss.

Peak performance: Does not compromise app stability or performance due to

patent-pending eBPF-based technology that allows it to work right in the kernel

without the need to recompile or load kernel modules.

Powered by eBPF, Oligo takes a different approach to application security, giving you…

Oligo's attack detection and response is a game changer for application security,

with a number of developer wish-list features available right out of the box.

How Oligo is different

oligo.security 25

https://www.oligo.security/

Plus, Oligo slashes vulnerability alerts by 85%—identifying vulnerabilities in libraries that are actually

running and could be exploited. So your team can direct their efforts to the vulnerabilities that make the

biggest difference.

If you’re tired of putting out fires and struggling to keep up in today’s vulnerability landscape, trust Oligo

to help you prioritize, directing efforts toward the vulnerabilities that matter. Oligo reduces the forest fire

to a manageable size, then helps you aim your remediation precisely where it’s needed most.

When you’re ready for a unique approach that offers a comprehensive understanding

of your applications at runtime, to book a personalized demo with

one of Oligo’s application security experts.

get in touch today

Book a Demo

Oligo is set to increase the productivity of AppSec teams and reduce

the risk of using open source by contextually prioritizing vulnerabilities

according to actual vs perceived risk.

Alex Nayshtut

CISO

oligo.security

https://www.oligo.security/demo
https://www.oligo.security/demo
https://www.oligo.security/

